
PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010) 1

Using the Global Arrays Toolkit to Reimplement
NumPy for Distributed Computation

Jeff Daily, Robert R. Lewis

F

Abstract—Global Arrays (GA) is a software system from Pacific Northwest
National Laboratory that enables an efficient, portable, and parallel shared-
memory programming interface to manipulate distributed dense arrays. Using a
combination of GA and NumPy, we have reimplemented NumPy as a distributed
drop-in replacement called Global Arrays in NumPy (GAiN). Scalability studies
will be presented showing the utility of developing serial NumPy codes which
can later run on more capable clusters or supercomputers.

Index Terms—Global Arrays, Python, NumPy, MPI

Introduction

Scientific computing with Python typically involves using
the NumPy package. NumPy provides an efficient multi-
dimensional array and array processing routines. Unfortu-
nately, like many Python programs, NumPy is serial in nature.
This limits both the size of the arrays as well as the speed with
which the arrays can be processed to the available resources
on a single compute node.

For the most part, NumPy programs are written, debugged,
and run in singly-threaded environments. This may be suffi-
cient for certain problem domains. However, NumPy may also
be used to develop prototype software. Such software is usu-
ally ported to a different, compiled language and/or explicitly
parallelized to take advantage of additional hardware.

Global Arrays in NumPy (GAiN) is an extension to Python
that provides parallel, distributed processing of arrays. It
implements a subset of the NumPy API so that for some
programs, by simply importing GAiN in place of NumPy
they may be able to take advantage of parallel processing
transparently. Other programs may require slight modification.
This allows those programs to take advantage of the additional
cores available on single compute nodes and to increase
problem sizes by distributing across clustered environments.

Background

Like any complex piece of software, GAiN builds on many
other foundational ideas and implementations. This back-
ground is not intended to be a complete reference, rather only
what is necessary to understand the design and implementation
of GAiN. Further details may be found by examining the
references or as otherwise noted.

The corresponding author is with Pacific Northwest National Laboratory, e-
mail: jeff.daily@pnnl.gov.

NumPy

NumPy [Oli06] is a Python extension module which adds
a powerful multidimensional array class ndarray to the
Python language. NumPy also provides scientific computing
capabilities such as basic linear algebra and Fourier transform
support. NumPy is the de facto standard for scientific comput-
ing in Python and the successor of the other numerical Python
packages Numarray [Dub96] and numeric [Asc99].

The primary class defined by NumPy is ndarray. The
ndarray is implemented as a contiguous memory segment.
Internally, all ndarray instances have a pointer to the loca-
tion of the first element as well as the attributes shape, ndim,
and strides. ndim describes the number of dimensions in
the array, shape describes the number of elements in each
dimension, and strides describes the number of bytes be-
tween consecutive elements per dimension. The ndarray can
be either FORTRAN- or C-ordered. Recall that in FORTRAN,
the first dimension has a stride of one while it is the opposite
(last) dimension in C. shape can be modified while ndim
and strides are read-only and used internally, although their
exposure to the programmer may help in developing certain
algorithms.

The creation of ndarray instances is complicated by
the various ways in which it can be done such as ex-
plicit constructor calls, view casting, or creating new in-
stances from template instances (e.g. slicing). To this end,
the ndarray does not implement Python’s __init__()
object constructor. Instead, ndarrays use the __new__()
classmethod. Recall that __new__() is Python’s hook
for subclassing its built-in objects. If __new__() returns
an instance of the class on which it is defined, then the
class’s __init__() method is also called. Otherwise, the
__init__() method is not called. Given the various ways
that ndarray instances can be created, the __new__()
classmethod might not always get called to properly
initialize the instance. __array_finalize__() is called
instead of __init__() for ndarray subclasses to avoid
this limitation.

The element-wise operators in NumPy are known as Univer-
sal Functions, or ufuncs. Many of the methods of ndarray
simply invoke the corresponding ufunc. For example, the
operator + calls ndarray.__add__() which invokes the
ufunc add. Ufuncs are either unary or binary, taking either one
or two arrays as input, respectively. Ufuncs always return the

mailto:jeff.daily@pnnl.gov


2 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

result of the operation as an ndarray or ndarray subclass.
Optionally, an additional output parameter may be specified
to receive the results of the operation. Specifying this output
parameter to the ufunc avoids the sometimes unnecessary
creation of a new ndarray.

Ufuncs can operate on ndarray subclasses or
array-like objects. In order for subclasses of the
ndarray or array-like objects to utilize the ufuncs,
they may define three methods or one attribute which
are __array_prepare__(), __array_wrap__(),
__array__(), and __array_priority__, respectively.
The __array_prepare__() and __array_wrap__()
methods will be called on either the output, if specified,
or the input with the highest __array_priority__.
__array_prepare__() is called on the way into the
ufunc after the output array is created but before any
computation has been performed and __array_wrap__()
is called on the way out of the ufunc. Those two functions
exist so that ndarray subclasses can properly modify any
attributes or properties specific to their subclass. Lastly, if an
output is specified which defines an __array__() method,
results will be written to the object returned by calling
__array__().

Single Program, Multiple Data

Parallel applications can be classified into a few well de-
fined programming paradigms. Each paradigm is a class of
algorithms that have the same control structure. The litera-
ture differs in how these paradigms are classified and the
boundaries between paradigms can sometimes be fuzzy or
intentionally blended into hybrid models [Buy99]. The Single
Program Multiple Data (SPMD) paradigm is one example.
With SPMD, each process executes essentially the same code
but on a different part of the data. The communication pattern
is highly structured and predictable. Occasionally, a global
synchronization may be needed. The efficiency of these types
of programs depends on the decomposition of the data and
the degree to which the data is independent of its neighbors.
These programs are also highly susceptible to process failure.
If any single process fails, generally it causes deadlock since
global synchronizations thereafter would fail.

Message Passing Interface (MPI)

Message passing libraries allow efficient parallel programs to
be written for distributed memory systems. MPI [Gro99a], also
known as MPI-1, is a library specification for message-passing
that was standardized in May 1994 by the MPI Forum. It
is designed for high performance on both massively parallel
machines and on workstation clusters. An optimized MPI
implementation exists on nearly all modern parallel systems
and there are a number of freely available, portable implemen-
tations for all other systems [Buy99]. As such, MPI is the de
facto standard for writing massively parallel application codes
in either FORTRAN, C, or C++.

The MPI-2 standard [Gro99b] was first completed in 1997
and added a number of important additions to MPI includ-
ing, but not limited to, one-sided communication and the
C++ language binding. Before MPI-2, all communication

required explicit handshaking between the sender and receiver
via MPI_Send() and MPI_Recv() in addition to non-
blocking variants. MPI-2’s one-sided communication model
allows reads, writes, and accumulates of remote memory
without the explicit cooperation of the process owning the
memory. If synchronization is required at a later time, it can be
requested via MPI_Barrier(). Otherwise, there is no strict
guarantee that a one-sided operation will complete before the
data segment it accessed is used by another process.

mpi4py

mpi4py is a Python wrapper around MPI. It is written to mimic
the C++ language bindings. It supports point-to-point commu-
nication, one-sided communication, as well as the collective
communication models. Typical communication of arbitrary
objects in the FORTRAN or C bindings of MPI require the
programmer to define new MPI datatypes. These datatypes de-
scribe the number and order of the bytes to be communicated.
On the other hand, strings could be sent without defining a new
datatype so long as the length of the string was understood by
the recipient. mpi4py is able to communicate any serializable
Python object since serialized objects are just byte streams.
mpi4py also has special enhancements to efficiently communi-
cate any object implementing Python’s buffer protocol, such as
NumPy arrays. It also supports dynamic process management
and parallel I/O [Dal05], [Dal08].

Global Arrays and Aggregate Remote Memory Copy Interface

The GA toolkit [Nie06], [Nie10], [Pnl11] is a software system
from Pacific Northwest National Laboratory that enables an
efficient, portable, and parallel shared-memory programming
interface to manipulate physically distributed dense multidi-
mensional arrays, without the need for explicit cooperation
by other processes. GA compliments the message-passing
programming model and is compatible with MPI so that the
programmer can use both in the same program. GA has sup-
ported Python bindings since version 5.0. Arrays are created
by calling one of the creation routines such as ga.ceate(),
returning an integer handle which is passed to subsequent
operations. The GA library handles the distribution of arrays
across processes and recognizes that accessing local memory
is faster than accessing remote memory. However, the library
allows access mechanisms for any part of the entire distributed
array regardless of where its data is located. Local memory is
acquired via ga.access() returning a pointer to the data
on the local process, while remote memory is retrieved via
ga.get() filling an already allocated array buffer. Individ-
ual discontiguous sets of array elements can be updated or
retrieved using ga.scatter() or ga.gather(), respec-
tively. GA has been leveraged in several large computational
chemistry codes and has been shown to scale well [Apr09].

The Aggregate Remote Memory Copy Interface (ARMCI)
provides general-purpose, efficient, and widely portable re-
mote memory access (RMA) operations (one-sided communi-
cation). ARMCI operations are optimized for contiguous and
non-contiguous (strided, scatter/gather, I/O vector) data trans-
fers. It also exploits native network communication interfaces
and system resources such as shared memory [Nie00]. ARMCI



USING THE GLOBAL ARRAYS TOOLKIT TO REIMPLEMENT NUMPY FOR DISTRIBUTED COMPUTATION 3

provides simpler progress rules and a less synchronous model
of RMA than MPI-2. ARMCI has been used to implement
the Global Arrays library, GPSHMEM - a portable version of
Cray SHMEM library, and the portable Co-Array FORTRAN
compiler from Rice University [Dot04].

Cython

Cython [Beh11] is both a language which closely resembles
Python as well as a compiler which generates C code based on
Python’s C API. The Cython language additionally supports
calling C functions as well as static typing. This makes writing
C extensions or wrapping external C libraries for the Python
language as easy as Python itself.

Previous Work

GAiN is similar in many ways to other parallel computation
software packages. It attempts to leverage the best ideas for
transparent, parallel processing found in current systems. The
following packages provided insight into how GAiN was to be
developed.

MITMatlab [Hus98], which was later rebranded as Star-P
[Ede07], provides a client-server model for interactive, large-
scale scientific computation. It provides a transparently parallel
front end through the popular MATLAB [Pal07] numerical
package and sends the parallel computations to its Parallel
Problem Server. Star-P briefly had a Python interface. Separat-
ing the interactive, serial nature of MATLAB from the parallel
computation server allows the user to leverage both of their
strengths. This also allows much larger arrays to be operated
over than is allowed by a single compute node.

Global Arrays Meets MATLAB (GAMMA) [Pan06] pro-
vides a MATLAB binding to the GA toolkit, thus allowing for
larger problem sizes and parallel computation. GAMMA can
be viewed as a GA implementation of MITMatlab and was
shown to scale well even within an interpreted environment
like MATLAB.

IPython [Per07] provides an enhanced interactive Python
shell as well as an architecture for interactive parallel com-
puting. IPython supports practically all models of parallelism
but, more importantly, in an interactive way. For instance, a
single interactive Python shell could be controlling a parallel
program running on a supercomputer. This is done by having
a Python engine running on a remote machine which is able
to receive Python commands.

distarray [Gra09] is an experimental package for the IPython
project. distarray uses IPython’s architecture as well as MPI
extensively in order to look and feel like NumPy ndarray
instances. Only the SPMD model of parallel computation is
supported, unlike other parallel models supported directly by
IPython. Further, the status of distarray is that of a proof of
concept and not production ready.

A Graphics Processing Unit (GPU) is a powerful parallel
processor that is capable of more floating point calculations
per second than a traditional CPU. However, GPUs are more
difficult to program and require other special considerations
such as copying data from main memory to the GPU’s on-
board memory in order for it to be processed, then copying

the results back. The GpuPy [Eit07] Python extension package
was developed to lessen these burdens by providing a NumPy-
like interface for the GPU. Preliminary results demonstrate
considerable speedups for certain single-precision floating
point operations.

A subset of the Global Arrays toolkit was wrapped in
Python for the 3.x series of GA by Robert Harrison [Har99].
It illustrated some important concepts such as the benefits of
integration with NumPy -- the local or remote portions of
the global arrays were retrieved as NumPy arrays at which
point they could be used as inputs to NumPy functions like
the ufuncs.

Co-Array Python [Ras04] is modeled after the Co-Array
FORTRAN extensions to FORTRAN 95. It allows the pro-
grammer to access data elements on non-local processors
via an extra array dimension, called the co-dimension. The
CoArray module provided a local data structure existing on
all processors executing in a SPMD fashion. The CoArray was
designed as an extension to Numeric Python [Asc99].

Design

The need for parallel programming and running these pro-
grams on parallel architectures is obvious, however, efficiently
programming for a parallel environment can be a daunting
task. One area of research is to automatically parallelize
otherwise serial programs and to do so with the least amount
of user intervention [Buy99]. GAiN attempts to do this for
certain Python programs utilizing the NumPy module. It will
be shown that some NumPy programs can be parallelized in a
nearly transparent way with GAiN.

There are a few assumptions which govern the design of
GAiN. First, all documented GAiN functions are collective.
Since Python and NumPy were designed to run serially on
workstations, it naturally follows that GAiN, running in an
SPMD fashion, will execute every documented function col-
lectively. Second, only certain arrays should be distributed.
In general, it is inefficient to distribute arrays which are
relatively small and/or easy to compute. It follows, then, that
GAiN operations should allow mixed inputs of both distributed
and local array-like objects. Further, NumPy represents an
extensive, useful, and hardened API. Every effort to reuse
NumPy should be made. Lastly, GA has its own strengths to
offer such as processor groups and custom data distributions.
In order to maximize scalability of this implementation, we
should enable the use of processor groups [Nie05].

A distributed array representation must acknowledge the
duality of a global array and the physically distributed memory
of the array. Array attributes such as shape should return
the global, coalesced representation of the array which hides
the fact the array is distributed. But when operations such as
add() are requested, the corresponding pieces of the input
arrays must be operated over. Figure 1 will help illustrate. Each
local piece of the array has its own shape (in parenthesis) and
knows its portion of the distribution (in square brackets). Each
local piece also knows the global shape.

A fundamental design decision was whether to subclass
ndarray or to provide a work-alike replacement for the



4 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Figure 1: Each local piece of the gain.ndarray has its own
shape (in parenthesis) and knows its portion of the distribution (in
square brackets). Each local piece also knows the global shape.

entire numpy module. The NumPy documentation states that
ndarray implements __new__() in order to control ar-
ray creation via constructor calls, view casting, and slicing.
Subclasses implement __new__() for when the constructor
is called directly, and __array_finalize__() in or-
der to set additional attributes or further modify the object
from which a view has been taken. One can imagine an
ndarray subclass called gainarray circumventing the
usual ndarray base class memory allocation and instead
allocating a smaller ndarray per process while retaining
the global shape. One problem occurs with view casting
-- with this approach the other ndarray subclasses know
nothing of the distributed nature of the memory within the
gainarray. NumPy itself is not designed to handle dis-
tributed arrays. By design, ufuncs create an output array when
one is not specified. The first hook which NumPy provides is
__array_prepare__() which is called after the output
array has been created. This means any ufunc operation on
one or more gainarray instances without a specified output
would automatically allocate the entire output on each process.
For this reason alone, we opted to reimplement the entire
numpy module, controlling all aspects of array creation and
manipulation to take into account distributed arrays.

We present a new Python module, gain, developed as part
of the main Global Arrays software distribution. The release
of GA v5.0 contained Python bindings based on the complete
GA C API, available in the extension module ga. The GA
bindings as well as the gain module were developed using
Cython. With the upcoming release of GA v5.1, the module
ga.gain is available as a drop-in replacement for NumPy.
The goal of the implementation is to allow users to write
import ga.gain as numpy

and then to execute their code using the MPI process manager
mpiexec -np 4 python script.py

In order to succeed as a drop-in replacement, all attributes,

Figure 2: Add two arrays with the same data distribution. There
are eight processors for this computation. Following the owner-
computes rule, each process owning a piece of the output array (far
right) retrieves the corresponding pieces from the sliced input arrays
(left and middle). For example, the corresponding gold elements
will be computed locally on the owning process. Note that for this
computation, the data distribution is the same for both input arrays
as well as the output array such that communication can be avoided
by using local data access.

Figure 3: Add two sliced arrays. There are eight processors for
this computation. The elements in blue were removed by a slice
operation. Following the owner-computes rule, each process owning
a piece of the output array (far right) retrieves the corresponding
pieces from the sliced input arrays (left and middle). For example,
the corresponding gold elements will be computed locally on the
owning process. Similarly for the copper elements. Note that for this
computation, the data for each array is not equivalently distributed
which will result in communication.

functions, modules, and classes which exist in numpy must
also exist within gain. Efforts were made to reuse as much
of numpy as possible, such as its type system. As of GA v5.1,
arrays of arbitrary fixed-size element types and sizes can be
created and individual fields of C struct data types accessed
directly. GAiN is able to use the numpy types when creating
the GA instances which back the gain.ndarray instances.

GAiN follows the owner-computes rule [Zim88]. The rule
assigns each computation to the processor that owns the data
being computed. Figures 2 and 3 illustrate the concept. For
any array computation, GAiN bases the computation on the
output array. The processes owning portions of the output array
will acquire the corresponding pieces of the input array(s)
and then perform the computation locally, calling the original
NumPy routine on the corresponding array portions. In some
cases, for example if the output array is a view created by a
slicing operation, certain processors will have no computation
to perform.

The GAiN implementation of the ndarray implements a
few important concepts including the dual nature of a global
array and its individual distributed pieces, slice arithmetic,
and separating collective operations from one-sided operations.
When a gain.ndarray is created, it creates a Global Array



USING THE GLOBAL ARRAYS TOOLKIT TO REIMPLEMENT NUMPY FOR DISTRIBUTED COMPUTATION 5

Figure 4: Slice arithmetic example 1. Array b could be created either
using the standard notation (top middle) or using the canonicalized
form (bottom middle). Array c could be created by applying the
standard notation (top right) or by applying the equivalent canonical
form (bottom right) to the original array a.

Figure 5: Slice arithmetic example 2. See the caption of Figure 4
for details.

of the same shape and type and stores the GA integer handle.
The distribution on a given process can be queried using
ga.distribution(). The other important attribute of the
gain.ndarray is the global_slice. The global_slice begins
as a list of slice objects based on the original shape of
the array.
self.global_slice = [slice(0,x,1) for x in shape]

Slicing a gain.ndarray must return a view just like slicing
a numpy.ndarray returns a view. The approach taken is to
apply the key of the __getitem__(key) request to the
global_slice and store the new global_slice on the
newly created view. We call this type of operation slice arith-
metic. First, the key is canonicalized meaning Ellipsis are
replaced with slice(0,dim_max,1) for each dimension
represented by the Ellipsis, all slice instances are
replaced with the results of calling slice.indices(),
and all negative index values are replaced with their positive
equivalents. This step ensures that the length of the key is
compatible with and based on the current shape of the array.
This enables consistent slice arithmetic on the canonicalized
keys. Slice arithmetic effectively produces a new key which,
when applied to the same original array, produces the same
results had the same sequence of keys been applied in order.
Figures 4 and 5 illustrate this concept.

When performing calculations on a gain.ndarray,
the current global_slice is queried when accessing
the local data or fetching remote data such that
an appropriate ndarray data block is returned.
Accessing local data and fetching remote data is
performed by the gain.ndarray.access()
and gain.ndarray.get() methods, respectively.
Figure 6 illustrates how access() and get()
are used. The ga.access() function on which
gain.ndarray.access() is based will always return the

Figure 6: access() and get() examples. The current
global_slice, indicated by blue array elements, is respected
in either case. A process can access its local data block for a
given array (red highlight). Note that access() returns the entire
block, including the sliced elements. Any process can fetch any other
processes’ data using get() with respect to the current shape of
the array (blue highlight). Note that the fetched block will not contain
the sliced elements, reducing the amount of data communicated.

entire block owned by the calling process. The returned piece
must be further sliced to appropriately match the current
global_slice. The ga.strided_get() function on
which gain.ndarray.get() method is based will fetch
data from other processes without the remote processes’
cooperation i.e. using one-sided communication. The calling
process specifies the region to fetch based on the current
view’s shape of the array. The global_slice is adjusted
to match the requested region using slice arithmetic and then
transformed into a ga.strided_get() request based on
the global, original shape of the array.

Recall that GA allows the contiguous, process-local data
to be accessed using ga.access() which returns a C-
contiguous ndarray. However, if the gain.ndarray is
a view created by a slice, the data which is accessed will be
contiguous while the view is not. Based on the distribution
of the process-local data, a new slice object is created from
the global_slice and applied to the accessed ndarray,
effectively having applied first the global_slice on the
global representation of the distributed array followed by a
slice representing the process-local portion.

After process-local data has been accessed and sliced as
needed, it must then fetch the remote data. This is again
done using ga.get() or ga.strided_get() as above.
Recall that one-sided communication, as opposed to two-sided
communication, does not require the cooperation of the remote
process(es). The local process simply fetches the correspond-
ing array section by performing a similar transformation to the
target array’s global_slice as was done to access the local
data, and then translates the modified global_slice into
the proper arguments for ga.get() if the global_slice
does not contain any step values greater than one, or
ga.strided_get() if the global_slice contained
step values greater than one.

One limitation of using GA is that GA does not allow
negative stride values corresponding to the negative step
values allowed for Python sequences and NumPy arrays.
Supporting negative step values for GAiN required special
care -- when a negative step is encountered during a slice



6 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Figure 7: Flattening a 2D distributed array. The block owned by a
process becomes discontiguous when representing the 2D array in 1
dimension.

operation, the slice is applied as usual. However, prior to
accessing or fetching data, the slice is inverted from a negative
step to a positive step and the start and stop values
are updated appropriately. The ndarray which results from
accessing or fetching based on the inverted slice is then re-
inverted, creating the correct view of the new data.

Another limitation of using GA is that the data distribution
cannot be changed once an array is created. This complicates
such useful functionality as numpy.reshape(). Currently,
GAiN must make a copy of the array instead of a view when
altering the shape of an array.

Translating the numpy.flatiter class, which assumes a
single address space while translating an N-dimensional array
into a 1D array, into a distributed form was made simpler
by the use of ga.gather() and ga.scatter(). These
two routines allow individual data elements within a GA to
be fetched or updated. Flattening a distributed N-dimensional
array which had been distributed in blocked fashion will
cause the blocks to become discontiguous. Figure 7 shows
how a 6 × 6 array might be distributed and flattened. The
ga.get() operation assumes the requested patch has the
same number of dimensions as the array from which the
patch is requested. Reshaping, in general, is made difficult
by GA and its lack of a redistribute capability. However, in
this case, we can use ga.gather() and ga.scatter()
to fetch and update, respectively, any array elements in
any order. ga.gather() takes a 1D array-like of indices
to fetch and returns a 1D ndarray of values. Similarly,
ga.scatter() takes a 1D array-like of indices to update
and a 1D array-like buffer containing the values to use for
the update. If a gain.flatiter is used as the output of
an operation, following the owner-computes rule is difficult.
Instead, pseudo-owners are assigned to contiguous slices of the
of 1D view. These pseudo-owners gather their own elements
as well as the corresponding elements of the other inputs,
compute the result, and scatter the result back to their own
elements. This results in additional communication which is
otherwise avoided by true adherence to the owner-computes
rule. To avoid this inefficiency, there are some cases where
operating over gain.flatiter instances can be optimized,
for example with gain.dot() if the same flatiter is
passed as both inputs, the base of the flatiter is instead
multiplied together element-wise and then the gain.sum()
is taken of the resulting array.

Evaluation

The success of GAiN hinges on its ability to enable distributed
array processing in NumPy, to transparently enable this pro-
cessing, and most importantly to efficiently accomplish those

Figure 8: laplace.py for N=10,000 and N=100,000. For
N=10,000, one matrix of double-precision numbers is approximately
0.75GB. For this problem, GAiN scales up to 2K cores. For
N=100,000, one matrix of double-precision numbers is approximately
75GB. In addition to handling this large-scale problem, GAiN
continues to scale up to 2K cores.

goals. Performance Python [Ram08] “perfpy” was conceived
to demonstrate the ways Python can be used for high perfor-
mance computing. It evaluates NumPy and the relative perfor-
mance of various Python extensions to NumPy. It represents
an important benchmark by which any additional high per-
formance numerical Python module should be measured. The
original program laplace.py was modified by importing
ga.gain in place of numpy and then stripping the additional
test codes so that only the gain (numpy) test remained.
The latter modification makes no impact on the timing results
since all tests are run independently but was necessary because
gain is run on multiple processes while the original test suite
is serial. The program was run on the chinook supercomputer
at the Environmental Molecular Sciences Laboratory, part of
Pacific Northwest National Laboratory. Chinook consists of
2310 HP DL185 nodes with dual socket, 64-bit, Quad-core
AMD 2.2 GHz Opteron processors. Each node has 32 Gbytes
of memory for 4 Gbytes per core. Fast communication between
the nodes is obtained using a single rail Infiniband interconnect
from Voltaire (switches) and Melanox (NICs). The system runs
a version of Linux based on Red Hat Linux Advanced Server.
GAiN utilized up to 512 nodes of the cluster, using 4 cores
per node.

In Figure 8, GAiN is shown to scale up to 2K cores on a
modest problem size. GAiN is also able to run on problems
which are not feasible on workstations. For example, to store
one 100,000x100,000 matrix of double-precision numbers
requires approximately 75GB.

During the evaluation, it was noted that a lot of time was
spent within global synchronization calls e.g. ga.sync().
The source of the calls was traced to, among other places, the
vast number of temporary arrays getting created. Using GA
statistics reporting, the original laplace.py code created
912 arrays and destroyed 910. Given this staggering figure, an
array cache was created. The cache is based on a Python dict
using the shape and type of the arrays as the keys and stores



USING THE GLOBAL ARRAYS TOOLKIT TO REIMPLEMENT NUMPY FOR DISTRIBUTED COMPUTATION 7

No Cache Depth-1 Cache Depth-2 Cache Depth-3 Cache
912/910 311/306 110/102 11/1

Table 1: How array caching affects GA array creation/destruction
counts when running laplace.py for 100 iterations. The smaller
numbers indicate better reuse of GA memory and avoidance of global
synchronization calls, at the expense of using additional memory.

discarded GA instances represented by the GA integer handle.
The number of GA handles stored per shape and type is
referred to as the cache depth. The gain.ndarray instances
are discarded as usual. Utilizing the cache keeps the GA
memory from many allocations and deallocations but primarily
avoids many synchronization calls. Three cache depths were
tested, as shown in Table 1. The trade-off of using this cache
is that if the arrays used by an application vary wildly in size
or type, this cache will consume too much memory. Other
hueristics could be developed to keep the cache from using
too much memory e.g. a maximum size of the cache, remove
the least used arrays, remove the least recently used. Based
on the success of the GA cache, it is currently used by GAiN.

Conclusion

GAiN succeeds in its ability to grow problem sizes beyond
a single compute node. The performance of the perfpy code
and the ability to drop-in GAiN without modification of the
core implementation demonstrates its utility. As described
previously, GAiN allows certain classes of existing NumPy
programs to run using GAiN with sometimes as little effort as
changing the import statement, immediately taking advantage
of the ability to run in a cluster environment. Once a smaller-
sized program has been developed and tested on a desktop
computer, it can then be run on a cluster with very little
effort. GAiN provides the groundwork for large distributed
multidimensional arrays within NumPy.

Future Work

GAiN is not a complete implementation of the NumPy API nor
does it represent the only way in which distributed arrays can
be achieved for NumPy. Alternative parallelization strategies
besides the owner-computes rule should be explored. GA
allows for the get-compute-put model of computation where
ownership of data is largely ignored, but data movement costs
are increased. Task parallelism could also be explored if load
balancing becomes an issue. The GA cache should be exposed
as a tunable parameter. Alternative temporary array creation
strategies could be developed such as lazy evaluation.

Acknowledgment

A portion of the research was performed using the Molecular
Science Computing (MSC) capability at EMSL, a national sci-
entific user facility sponsored by the Department of Energy’s
Office of Biological and Environmental Research and located
at Pacific Northwest National Laboratory (PNNL). PNNL is
operated by Battelle for the U.S. Department of Energy under
contract DE-AC05-76RL01830.

REFERENCES

[Apr09] E. Apra, A. P. Rendell, R. J. Harrison, V. Tipparaju, W. A. deJong,
and S. S. Xantheas. Liquid water: obtaining the right answer for the
right reasons, Proceedings of the Conference on High Performance
Computing Networking, Storage, and Analysis, 66:1-7, 2009.

[Asc99] D. Ascher, P. F. Dubois, K. Hinsen, J. Hugunin, and T. Oliphant.
Numerical Python, UCRL-MA-128569, 1999.

[Beh11] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and
K. Smith. Cython: The Best of Both Worlds, Computing in Science
Engineering, 13(2):31-39, March/April 2011.

[Buy99] R. Buyya. High Performance Cluster Computing: Architectures and
Systems, Vol. 1, Prentice Hall PTR, 1 edition, May 1999.

[Dai09] J. Daily. GAiN: Distributed Array Computation with Python, Mas-
ter’s thesis, Washington State University, Richland, WA, August
2009.

[Dal05] L. Dalcin, R. Paz, and M. Storti. MPI for python, Journal of Parallel
and Distributed Computing, 65(9):1108-1115, September 2005.

[Dal08] L. Dalcin, R. Paz, M. Storti, and J. D’Elia. MPI for python: Per-
formance improvements and MPI-2 extensions, Journal of Parallel
and Distributed Computing, 68(5):655-662, September 2005.

[Dot04] Y. Dotsenko, C. Coarfa,. and J. Mellor-Crummmey. A Multi-
Platform Co-Array Fortran Compiler, Proceedings of the 13th
International Conference on Parallel Architectures and Compilation
Techniques, 29-40, 2004.

[Dub96] P. F. Dubois, K. Hinsen, and J. Hugunin. Numerical Python,
Computers in Physics, 10(3), May/June 1996.

[Ede07] A. Edelman. The Star-P High Performance Computing Platform,
IEEE International Conference on Acoustics, Speech, and Signal
Processing, April 2007.

[Eit07] B. Eitzen. Gpupy: Efficiently using a gpu with python, Master’s
thesis, Washington State University, Richland, WA, August 2007.

[Gra09] B. Granger and F. Perez. Distributed Data Structures, Parallel
Computing and IPython, SIAM CSE 2009.

[Gro99a] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel
Programming with the Message-Passing Interface, second edition,
MIT Press, November 1999.

[Gro99b] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2: Advanced
Features of the Message-Passing Interface, MIT Press, 1999.

[Har99] R. J. Harrison. Global Arrays Python Interface, http://www.emsl.
pnl.gov/docs/global/old/pyGA/, December 1999.

[Hus98] P. Husbands and C. Isbell. The Parallel Problems Server: A Client-
Server Model for Interactive Large Scale Scientific Computation,
3rd International Meeting on Vector and Parallel Processing, 1998.

[Nie00] J. Nieplocha, J. Ju, and T. P. Straatsma. A multiprotocol commu-
nication support for the global address space programming model
on the IBM SP, Proceedings of EuroPar, 2000.

[Nie05] J. Nieplocha, M. Krishnan, B. Palmer, V. Tipparaju, and Y. Zhang.
Exploiting processor groups to extend scalability of the GA shared
memory programming model, Proceedings of the 2nd conference
on Computing Frontiers, 262-272, 2005.

[Nie06] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease,
and E. Apra. Advances, Applications and Performance of the
Global Arrays Shared Memory Programming Toolkit, International
Journal of High Performance Computing Applications, 20(2):203-
231, 2006.

[Nie10] J. Nieplocha, M. Krishnan, B. Palmer, V. Tipparaju, and J. Ju. The
Global Arrays User’s Manual.

[Oli06] T. E. Oliphant. Guide to NumPy, http://www.tramy.us/, March 2006.
[Pal07] W. Palm III. A Concise Introduction to Matlab, McGraw-Hill, 1st

edition, October 2007.
[Pan06] R. Panuganti, M. M. Baskaran, D. E. Hudak, A. Krishnamurthy,

J. Nieplocha, A. Rountev, and P. Sadayappan. GAMMA: Global
Arrays Meets Matlab, Technical Report. ftp://ftp.cse.ohio-state.edu/
pub/tech-report/ 2006/TR15.pdf

[Per07] F. Perez and B. E. Granger. IPython: a System for Interactive
Scientific Computing, Computing in Science Engineering, 9(3):21-
29, May 2007.

[Pnl11] Global Arrays Webpage. http://www.emsl.pnl.gov/docs/global/
[Ram08] P. Ramachandran. Performance Python, http://www.scipy.org/

PerformancePython, May 2008.
[Ras04] C. E. Rasmussen, M. J. Sottile, J. Nieplocha, R. W. Numrich, and

E. Jones. Co-array Python: A Parallel Extension to the Python
Language, Euro-Par, 632-637, 2004.

[Zim88] H. P. Zima, H. Bast, and M. Gerndt. SUPERB: A tool for semi-
automatic MIMD/SIMD Parallelization, Parallel Computing, 6:1-
18, 1988.

http://www.emsl.pnl.gov/docs/global/old/pyGA/
http://www.emsl.pnl.gov/docs/global/old/pyGA/
http://www.tramy.us/
ftp://ftp.cse.ohio-state.edu/pub/tech-report/
ftp://ftp.cse.ohio-state.edu/pub/tech-report/
http://www.emsl.pnl.gov/docs/global/
http://www.scipy.org/PerformancePython
http://www.scipy.org/PerformancePython

	Introduction
	Background
	NumPy
	Single Program, Multiple Data
	Message Passing Interface (MPI)
	mpi4py
	Global Arrays and Aggregate Remote Memory Copy Interface
	Cython

	Previous Work
	Design
	Evaluation
	Conclusion
	Future Work
	Acknowledgment
	References

